Time, Time Difference and Time Interval

Time Interval Measurements

A time interval measurement is a measurement of the elapsed time between some designated START phenomena and a later STOP phenomena.

Time Interval Measurements

Time Interval Measurements

Electronic Counter

Signal input stages: The input stages condition the input signals and convert them

Gate Flip-Flop: The Gate Flip Flop then generates a pulse equal to the length of the timer interval required.

Oscillator and gate: Elapsed time between start and stop is measured by counting the Time Base frequency while the gate is open.

Oscillator and gate: Elapsed time between start and stop is measured by counting the Time Base frequency while the gate is open.

For conventional counters, direct readout is achieved by using clock frequencies related by powers of 10 i.e., $1 \mathrm{MHz}, 10 \mathrm{MHz}, 100 \mathrm{MHz}$, etc., (period of $1 \mu \mathrm{~s}, 100 \mathrm{~ns}, 10 \mathrm{~ns}$, respectively)

Counter/ latch: The counter takes the incoming pulses from the gate. It has a set of divide-by-10 stages as a decimal based display is required. The number of stages within the overall counter is equal to the number of display digits minus 1 . As the counters are chained the first stage is the input divided by ten, the next is the input divided by 10×10 (100) as it has been divided by two stages, and so forth.

Display: The display takes the output from the latch and displays it in a normal readable format. There is a digit for each decade the counter can display. The display will be programmed to place the decimal point in the correct position. For example for the 1 second time interval with a 1 MHz clock, 1000000 pulses are counted and the decimal point will need to be placed after the figure 1 to indicate 1.000000 seconds.

2022 SIM TFMWG Virtual Workshop

Time Difference Measurements

Time Difference Measurements

Time Difference Measurements

The difference between one measurement of time and another

The resolution of a conventional time interval counter is determined by its time base frequency. A frequency of 1 MHz gives $1 \mu \mathrm{sec}$ resolution, 100 MHz gives 10 ns resolution, 500 MHz gives 2 ns resolution and so on. signal of interest to the counter they are one of the most critical circuit elements in accurate time interval measurements.

The input amplifier and trigger circuits establish the voltage level at which an input signal will trigger the counter. Noise, drift, ac-dc coupling, and other factors relating to these circuits all influence the measurement. Since these circuits are so important it is worthwhile looking in some detail at the operation of one of these input channels.

Tiempo y Frecuencia

The measurement accuracy of the time interval counter is dependent upon the clock oscillator

Time Difference Measurements Example

 tiviracosh

Time

Signal 1

Signal 2
$f_{2}=5 \mathrm{MHz}$
$T=200 n s$

Time

Signal 1

Signal 2
$f_{2}=5 \mathrm{MHz}+c \times t$
$T=200 n s+\phi(t)$

The frequency of signal 2 changes linearly in time with respect to signal 1

Operating Principle of a Frequency Mixer

$V_{1}(t)=A_{1} \operatorname{sen} \phi_{1}$

$$
\begin{aligned}
V(t) & =V_{1}(t) \times V_{2}(t) \\
& =A_{1} \operatorname{sen} \phi_{1} \times A_{2} \operatorname{sen} \phi_{2}
\end{aligned}
$$

$V_{2}(t)=A_{2} \operatorname{sen} \phi_{2}$

Operating Principle of a Frequency Mixer

$$
\begin{aligned}
V(t) & =V_{1}(t) \times V_{2}(t)=A_{1} \operatorname{sen} \phi_{1} \times A_{2} \operatorname{sen} \phi_{2} \\
& =A_{1}\left(\frac{e^{i \phi_{1}}-e^{-i \phi_{1}}}{2 i}\right) \times A_{2}\left(\frac{e^{i \phi_{2}}-e^{-i \phi_{2}}}{2 i}\right) \\
& =A_{1} A_{2}\left(\frac{e^{i \phi_{1}+i \phi_{2}}-e^{i \phi_{1}-i \phi_{2}}-e^{-i \phi_{1}+i \phi_{2}}+e^{-i \phi_{1}-i \phi_{2}}}{4 \times i \times i}\right) \\
& =A_{1} A_{2}\left(\frac{e^{i\left(\phi_{1}+\phi_{2}\right)}+e^{-i\left(\phi_{1}+\phi_{2}\right)}-e^{i\left(\phi_{1}-\phi_{2}\right)}-e^{-i\left(\phi_{1}-\phi_{2}\right)}}{4 \times 1}\right) \\
& =\frac{A_{1} A_{2}}{2}\left(\frac{e^{i\left(\phi_{1}+\phi_{2}\right)}+e^{-i\left(\phi_{1}+\phi_{2}\right)}}{2}-\frac{e^{i\left(\phi_{1}-\phi_{2}\right)}+e^{-i\left(\phi_{1}-\phi_{2}\right)}}{2}\right) \\
& =\frac{A_{1} A_{2}}{2}\left(\operatorname{COS}\left(\phi_{1}+\phi_{2}\right)-\operatorname{COS}\left(\phi_{1}-\phi_{2}\right)\right)
\end{aligned}
$$

$$
\operatorname{sen} \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}
$$

Operating Principle of a Frequency Mixer

Operating Principle of a Frequency Mixer

$V_{1}(t)=A_{1} \operatorname{sen} \phi_{1}$

$$
V_{2}(t)=A_{2} \operatorname{sen} \phi_{2}
$$

$$
\begin{gathered}
V(t)=V_{1}(t) \times V_{2}(t) \\
=A_{1} \operatorname{sen} \phi_{1} \times A_{2} \operatorname{sen} \phi_{2} \\
V(t)=\frac{A_{1} A_{2}}{2} \cos \left(\phi_{1}+\phi_{2}\right)-\frac{A_{1} A_{2}}{2} \cos \left(\phi_{1}-\phi_{2}\right) \\
V(t)=\frac{A_{1} A_{2}}{2} \cos \left(\phi_{1}-\phi_{2}\right)
\end{gathered}
$$

Time Measurements

Time Measurements

00:00:11.500006

Time Synchronization

Time Measurements

Time Measurements

SMART GRID
A vision for the future - a network of integrated microgrids that can monitor and heal itself.

GENERATORS
Energy from small generators and solar panels can reduce overall demand on the grid.

Time Calibration Example

Time Calibration Example

Time Difference Calibration Example

Time Difference Calibration Example
DIFERENCIAS DE TIEMPO, LÍNEA DE AJUSTE Y RESIDUOS
(UTC(CNM) - Patrón Viajero)

Time Difference Calibration Example

DIFERENCIAS DE TIEMPO, LÍNEA DE AJUSTE Y RESIDUOS
(UTC(CNM) - Patrón Viajero)

Time Difference Calibration Example

